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Abstract. Query processing in global information systems integrating multiple heteroge-
neous sources is a challenging issue in relation to the effective extraction of information
available on-line. In this paper we propose intelligent, tool-supported techniques for querying
global information systems integrating both structured and semistructured data sources. The
techniques have been developed in the environment of a data integration, wrapper/mediator
based system, MOMIS, and try to achieve two main goals: optimized query reformulation
w.r.t local sources and object fusion, i.e. grouping together information (from the same or
different sources) about the same real-world entity.

The developed techniques rely on the availability of integration knowledge, i.e. local source
schemata, a virtual mediated schema and its mapping descriptions, that is semantic map-
pings w.r.t. the underlying sources both at the intensional and ezxtensional level. Mapping
descriptions, obtained as a result of the semi-automatic integration process of multiple hetero-
geneous sources developed for the MOMIS system, include, unlike previous data integration
proposals, extensional intra/interschema knowledge. Extensional knowledge is exploited to
detect extensionally overlapping classes and to discover implicit join criteria among classes,
which enables the goals of optimized query reformulation and object fusion to be achieved.
The techniques have been implemented in the MOMIS system but can be applied, in general,
to data integration systems including extensional intra/interschema knowledge in mapping
descriptions.

1 Introduction

The purpose of data integration is to provide a uniform interface to multiple heterogeneous sources.
Applications range from searching information on the netto providing an uniform consistent view of
data associated with the various legacy systems of an enterprise. Query processing in such global
information systems environment is a challenging issue which has been faced in many previous
works in both the AI and Database Community [2,3,18,15,22,7,6]. A data integration system,
based on conventional wrapper/mediator architectures, usually allows the user to pose a query and
receive a unified answer without the need of: locating the sources relevant to the query, interacting
with each source in isolation and combining the data coming from the different sources. Data
integration systems usually follow this architecture: each data source provides a schema and a
mediated (global) virtual schema of all the sources is obtained manually or semi-automatically, for
a particular integration application. The mediated schema has a set of mapping descriptions (called
source descriptions in [16]) that specify the semantic mapping between the mediated schema and
the sources schema. The data integration system uses these mapping descriptions to reformulate
a user query into queries over the source schemata.

Unlike previous mentioned approaches, mapping descriptions obtained as a result of the semi-

automatic integration process developed for the MOMIS system [5,4], include extensional in-



tra/interschema knowledge which is an important step in the pre-integration phase [25]. For in-
stance, if there are two classes Person in two different sources, then these classes may contain
instances corresponding to the same real-world object or may refer to disjoint sets of real-world
objects. Handling extensional relationships among object classes of different schemata is a funda-
mental task performed by the integration designer for a correct and complete schema integration.

As stated in [21], one of the main tasks of mediators is to fuse information from heteroge-
neous information sources. This may involve, for example, removing redundancies, and resolving
inconsistencies in favor of the most reliable source. Mediators play the central role in information
integration, and one of their most important task is to perform object fusion. This involves group-
ing together information (from the same or different sources) about the same real-world entity.
In doing this fusion, the mediator may also “refine” the information by removing redundancies,
resolving inconsistencies between sources in favor of the most reliable source, and so on. A mediator
may also have to avoid accessing to a particular source if, on the basis of extensional interschema
knowledge, another involved source includes the information of such a source, or will provide an
empty answer or if another source provides similar information at a lower cost (either financial or

computational).

From a theoretical point of view, solving a user (mediated) query, i.e. giving a single unified
answer w.r.t. multiple sources, implies to face two main problems: query reformulation/optimization
and object fusion. Much research effort has concentrated on Query reformulation/optimization [10,
20,11,12,23,17,19], whereas, the object fusion problem has received little attention [21,26]. We
believe that it is a relevant topic now and will become more important in the future as integration
systems cope with more and more information that has not been nicely structured and partitioned
in advance. To solve Object Fusion it is necessary to devise a theoretical framework that exploits all
the available integration knowledge, and, in particular, extensional inter/intra schema knowledge.

The theoretical framework we propose provides intelligent, tool-supported techniques to query
global information systems integrating both structured and semistructured data sources.

The techniques have been developed in the environment of a data integration, wrapper/mediator
based system, MOMIS, and rely on the availability of integration knowledge, i.e. local sources
schemata, a virtual mediated schema and its mapping descriptions, i.e. semantic mappings w.r.t.
the underlying sources both at the intensional and extensional level. Mapping descriptions include,
unlike previous data integration proposals, extensional intra/interschema knowledge.

Extensional knowledge is exploited to detect extensionally overlapping classes and to discover
implicit join criteria among classes, thus allowing to achieve the optimized query reformulation
and object fusion goals. In particular, starting from the method developed in [25], we exploit the
“base extension” approach in order to face the reformulation/optimization problem of a mediated
query and, on the basis of mapping descriptions, we develop a semi—automatic method to discover
implicit join rules among classes in order to face the object fusion problem.

The techniques have been implemented in the MOMIS system but can be applied, in general,
to data integration systems including extensional intra/interschema knowledge in the mapping

descriptions.



1.1 Overview of the MOMIS system

Like other integration projects [1,24], MOMIS follows a “semantic approach” to information inte-
gration based on the conceptual schema, or metadata, of the information sources, and on the I®
architecture [14] (see Figure 1); for a detailed description of the MOMIS system see [6,4] avail-
able at http://www.dbgroup.unimo.it/Momis. The system is composed by the following functional
elements that communicates using the CORBA [13] standard:

1. a common data model, ODMps, which is defined according to the ODLs language, to describe
source schemas for integration purposes. ODM;s and ODLj;s have been defined as subset of
the corresponding ones in ODMG, following the proposal for a standard mediator language
developed by the I® /POB working group [8]. In addition, ODL;s introduces new constructors
(intensional /extensional relationships) to support the semantic integration process;

2. Wrappers, placed over each sources, translate metadata descriptions of the sources into the
common ODLs representation, translate (reformulate) a global query expressed in the OQLs*
query language into queries expressed in the sources languages and export query result data set;

3. a Mediator, which is composed of two modules: the Global Schema Builder (GSB) and the
Query Manager (QM). The GSB module processes and integrates ODLjs descriptions received
from wrappers to derive the mediated schema. The QM module performs query processing
and optimization. The QM generates OQL;s queries to be sent to wrappers starting from each
query posed by the user on the mediated schema. QM automatically generates the translation
of the query into a corresponding set of sub-queries for the sources and synthesize a unified
global answer for the user.

The original contribution of MOMIS is related to the availability of a set of techniques for the
designer to face common problems that arise when integrating pre-existing information sources.
MOMIS provides the capability of explicitly introducing many kinds of knowledge for integration,
such as integrity constraints, intra- and inter-source intensional and extensional relationships, and
designer supplied domain knowledge. A Common Thesaurus, which has the role of a shared ontology
of the source is built in a semi-automatic way. The Common Thesaurus is a set of intra and inter-
schema intensional and extensional relationships, describing inter-schema knowledge about classes
and attributes of sources schemas; it provides a reference on which to base the identification of
classes candidate to integration and subsequent derivation of their global representation.

MOMIS supports information integration in the creation of a mediated schema of all sources
(Global Schema) combining reasoning capabilities of Description Logics (ODB-Tools in Figure 1)
with affinity-based clustering techniques (Artemis in Figure 1), by exploiting a common ontology for
the sources constructed using lexical knowledge from WordNet and validated integration knowledge.

The user application interacts with MOMIS to query the Global Schema by using the OQLjs
language. This phase is performed by the QM that generates the OQL;s queries for wrappers.
Using Mapping Descriptions and DLs techniques, the QM generates in an automatic way the
reformulation/optimization of the generic OQL;s query into different sub-queries, one for each
involved local source.

To achieve the mediated query result, the QM has to assemble each local sub-query result into a
unified data set. This process involves the solution of redundancy and reconciliation problems, due

to the incomplete and overlapping information available on the local sources, i.e. Object Fusion.

1 OQL;s is a subset of OQL-ODMG.



legenda

P User interaction
~#—P> COREA interaction
I Integration | Spbplication
S G Designer 3

——Jy User
Commmla Software tools 1

.
Y

Y

]
™| ARTEMIS

SI-Designer

+ SLIM WordNet interaction
+ SIM ODB-Tools validation
« TUNIM Map. table tuning

Global Schema Builder

.a ODB-Tools
Global Schema )
METADATA REPOSITORY / Service 7level

QueryManager

MOMIS mediator

I t t t
Wrapper Wrapper Wrapper Wrapper
e | " [

Relational ML Object generic
| Source Source Source Source

Data level
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As a mediator is not the owner of the data stored in the local classes but it only provides a
virtual view, this means that the mediator has to recognize instances of the sources to be fused
in an object. This recognition is a difficult task as: each source may have its own techniques to
identify objects, like keys for relational or OIDs for object sources, and, usually instances referring
to the same real word object are identified with different keys or OIDs, depending on the source
the object is stored. The idea of our approach is to find semantically homogeneous attributes for
each instance of each local class, on the basis of the available integration knowledge.

The outline of the paper is the following. Section 2 presents preliminaries and the formalization
of Mapping Descriptions. In particular, Subsection 2.1 outlines the MOMIS approach to data
integration and ODLjs relationships together with a running example which will be used in the
remainder of the paper. Subsection 2.2 provides the the formalization of Mapping Descriptions.
Section 3 introduces our solution to the Object Fusion problem. Finally, Section 4 presents the
MOMIS Query Manager implementing the proposed theoretical framework.

The authors are aware that the presented work is quite preliminary, but think that this new

approach may merit attention.

2 Mapping Descriptions

2.1 Preliminaries

The MOMIS approach to intelligent schema integration is supported by a tool, SI-Designer [4] and

is articulated in the following phases:

1. Generation of a Common Thesaurus
2. Affinity analysis of ODLys classes Relationships in the Common Thesaurus are used to evaluate
the level of affinity between classes intra and inter sources. The concept of affinity is introduced

to formalize the kind of relationships that can occur between classes from the integration point



of view. The affinity of two classes is established by means of affinity coefficients based on class
names, class structures and relationships in Common Thesaurus

3. Clustering ODL;s classes Classes with affinity in different sources are grouped together in
clusters using hierarchical clustering techniques. The goal is to identify the classes that have
to be integrated since describing the same or semantically related information

4. Generation of the mediated schema A global class is defined for each cluster, which is represen-
tative of all cluster’s classes and is characterized by the union of their attributes. The global
schema for the analyzed sources is composed of all the global classes derived from clusters, and

is the basis for posing queries against the sources.

For a detailed description of the method see [6,4]. In the following we briefly introduce the ODL;s
primitives related to intensional/extensional relationships and the running example that will be

used in the remainder of this paper (Figure 2).

ODL;s relationships

In order to permit a semantically rich representation of source schemas relationships, ODLys in-
troduces the following primitives:

Intensional relationships. These are terminological relationships expressing intra and inter-
schema knowledge for the source schemas. Intensional relationships are defined between classes
and attributes, and are specified by considering class/attribute names, called terms. The fol-
lowing relationships can be specified in ODL;s:

— SYN (Synonym-of), defined between two terms ¢; and ¢;, with ¢; # t;, that are considered
synonyms in every considered source (i.e., t; and ¢; can be indifferently used in every source
to denote a certain concept).

— BT (Broader Terms), or hypernymy, defined between two terms ¢; and ¢; such as t; has a
broader, more general meaning than ¢;. BT relationship is not symmetric. The opposite of
BT is NT (Narrower Terms), or hyponymy.

— RT (Related Terms), or positive association, defined between two terms ¢; and ¢; that are
generally used together in the same context in the considered sources.

An intensional relationships has no implications for the extension/compatibility of the structure
(domain) of the two involved classes (attributes). Consequently, our notion of intensional rela-
tionships is different from the one proposed by Catarci and Lenzerini [9], where an intensional
relationships has some extensional import.

Extensional relationships. Intensional relationships SYN, BT and NT between two classes C}
and Cy may be “strengthened” by establishing that they are also extensional relationships [9].
Consequently, the following extensional relationships can be defined in ODLys:

C1 SYNez: Ca: this means that the instances of C; are the same of Cs.

C1 BTy Cs: this means that the instances of C are a superset of the instances of Cs.

C1 NTeuz: Ca: this means that the instances of C; are a subset of the instances of Cs.

C DISJez¢ Cy: this means that the instances of C'; are disjoint from the instances of Cs.

In contrast with [25] we do not introduce an overlap relationship as we assume a default overlap
relationships among two classes if no extensional relationship is specified. Moreover, extensional
relationships “constrain” the structure of the two classes C; and C5 , that is C7 NTeyz Cs is

semantically equivalent to an “isa” relationship.



UNIVERSITY source (UNI)

Research_Staff (name,e_mail,dept_code,s_code)

School_Member (name,school,year,e_mail)
Department (dept_name,dept_code,budget)
Section(section_name,s_code,length,room_code)

Room(room_code,seats_number,notes)

COMPUTER_SCIENCE source (CS)

CS_Person(first_name,last_name)

Professor:CS_Person (belongs_to :Division,rank)
Student:CS_Person(year,takes:set(Course),rank,e_mail)
Division(description,address:Location)

Location(city,street,number,country)

Course(course_name,taught_by:Professor)

TAX_POSITION_XML source (T'P)
<!ELEMENT ListOfStudent (Student*)>

<!ELEMENT Student (name, s_code, school _name, email, tax_fee)>
<!ELEMENT name (#PCDATA)>

Fig. 2. Three heterogeneous University Sources

Running example We consider three sources with different data model. The first source is a
relational database, University (S), containing data about the staff and the students of a given
university. The relations are: Research Staff, School Member, Department, Section and Room.
For a given professor (in Research Staff) his department (dept_code) and his section (s_code)
are stored. In the relation School Member the information name, year and school about students
enrolled at the university are stored.

The second source Computer_Science (S2) is an object—oriented database containing informa-
tion about people belonging to the computer science department of the same university, and is
an object-oriented database. There are six classes: CS_Person, Professor, Student, Division,
Location and Course. Information is quite similar to the first source: it stores data on professors
and students, also giving the possibility to retrieve the division of a given professor. This divi-
sion may be part of another department, being a logical specialization of Department. The class
Location maintains the division address. With respect to students, we may know the courses they
take and their year.

A third source is also available, Tax Position (S3), derived from the Registry Office. It consists

of an XML file, storing information about student’s tax_fees.

2.2 Global Class and Mapping Tables

Starting from the output of the cluster generation (Clustering ODLys classes , see Figure 3), we
define, for each cluster, a Global Class that represents the mediated view of all the classes of the

cluster. For each global class a set of global attributes and, for each of them, the mappings with the



CS.Division
UNI.Department

cl3

NI.Section CS.Course

\TP.Sudent

CS.Student CS.Person

CS.Professor
UNI.School_Member

Fig. 3. Example of affinity tree and selected Clusters

University Person name dept o_mail section school
UNI.Research_Staff |name dept_code|le_mail 5_code  |null
U1, School_Member [name null e_mail null school
C5.C5 Person first_narme and last_name |Null null null glei
C5 Student first_name and last_name |Null e_mail null s
CS Professaor first_name and last_name |Null null null "og"
TP Student name null e_mail null school_name| ...
vear belong to | takes rank s code | tax fee
null ! null "professor |null null
vear nul! null "student” null null
null null null null null null
year ! takes rank null null
null "belong_to"|null rank null null
null null null "student” s_code [tax_fee

Fig. 4. Mapping Table of the Global Class University_Person

local attributes (i.e. the attributes of the local classes belonging to the cluster) are given 2. Briefly,
we can say that the global attributes are obtained in two steps: (1) Union of the attributes of all the
classes belonging to the cluster; (2) Fusion of the “similar” attributes; in this step redundancies are
eliminated in a semi—automatic way taking into account the relationships stored in the Common
Thesaurus. For each global class a persistent mapping-table storing all the mappings is generated;
it is a table whose rows represent the set of the local classes which belong to the cluster and whose
columns represent the global attributes. An element MT[L][ga] represents the set of attributes of
the local class L which are mapped into the global attribute ga: the value of the ga attribute is a
function of the values assumed by the set of attributes M T'[L][ga]. Some simple and frequent cases
of such function are the following (see Figure 4 as an example):
— identity : the ga value is equal to the la value; we denote this case as MT[L][ga] = la.
— concatenation : the ga value is obtained as a concatenation of the values assumed by a set of
local attributes la; of the local class L; we denote this case as MT[L][ga] = la; and ...and la,
(see MT[CS.Student]|[name] in Figure 4).

When the global attribute ga has no correspondence with any attribute of the local class L, the
designer can choose between the following two solutions:

2 For a detailed description of the mappings selection and of the tool SI-Designer which assist the designer

in this integration phase see [4].



— constant : the global attribute ga assumes into the local class L a costant value set by the
designer; we denote this case by MT[L][ga] = const (see the Rank attribute).

— undefined : the global attribute ga is set undefined into the local class L; we denote this case
by MT[L][ga] = null.

Formally, let L be a set of local class names (denoted by Ly, Ls,...) and let LA be a set of local
attributes (denoted by lai,las,...); La is a total function La: L — 2LA which associates local

class names with attributes. Let GA be a set of global attributes (denoted by gai, gas,...).

Definition 1 (Global Class). Given a set L of local class names and o set GA of global attributes
a global class G is a tuple G = (L, GA, MT ) where MT, called mapping table, is a total function

MT:Lx GA — ZLU{const}U {null}

2.3 Extensional Relationships and Base Extensions

Definition 2 (Extensional Relationships Set). Given a set L of local class names, by ERS
we denote an extensional relationships set among classes of L:

ERS g {Ll@Lz | L1,L2 € Land O € {SYNea:t; BTezt, NTegt, DISJezt}}

As an example, let us consider the following extensional relationships among the classes of
University Person expressing the integration designer’s knowledge about the sources:
1. UNI.School Member SYNg,; TP.Student 5. UNI.Research Staff DISJg,; TP.Student
2. CS.Student NTg,;UNI.School Member 6. UNI.Research Staff DISJg,; CS.Student
3. CS.Professor NTpg,; UNI.Research Staff 7.CS.Student NTg,; CS.CS_Person

4. CS.Professor DISJg,; UNI.School Member 8. CS.Professor NTg,; CS.CS_Person
Relationships from 1 to 6 are designer-supplied inter-schema relationships; 7 and 8 are intra—schema

extensional relationships automatically extracted by the system from the isa relationships of the
COMPUTER_SCIENCE source.

Intuitively, a Base Extension is a partitioning of the set of the sources objects. The starting point
are the instances of the local classes: given a local class L, Z(L) denotes the set of its real-world
objects. An instance of a global class G is an instance satisfying all the extensional relationships
defined over the set of local classes.

Definition 3 (Global Class Instance). Given a global class G = (L, GA,MT) let T: L — 2P
be a function which associates local classes to their instances, where D is the set of real-world
objects. Let ERS be a set of extensional relationships among classes of L. We say that T is an
instance of G w.r.t. ERS if

1. I(Ly) = Z(La), VL1SYNeziLo € ERS 8. Z(Ly) D I(L2), VYL1BTeyiLs € ERS

2. I(Ly) CZ(Ls), VLiNTez Ly € ERS 4. T(L1)NTI(Ls) =0, ¥V L1DI1SIeye Lo € ERS

Definition 4 (Base Extension). Given a global class G = (L, GA, MT ) and a set of extensional
relationships ERS, let T an instance of G w.r.t. ERS. A set of base extensions of G on 7 is a pair
(B, F), where B is a set of base extension names (denoted by By, Bs,...) and F is a total function
F: B — 2% such that: Upe F(B) = L and the set {\peps) T(E) ~ Upes_r(s) Z() | B € L}
is a partition of Uy Z(L).



TP.Student UNI.Research_Staff

BE7
CS.Professor
BE5S BE6
‘ \ BE4 CS.CS Person
UNI.School_Member \
CS.Student

Fig. 5. Base extension Set for the global class University _Person

CL I—| BE| BE1 | BE2 | BE3 | BE4 | BE5 | BE6 | BE7

UNI.School_Member 1 1 1 0 0 0 0
UNI.Research_Staff 0 0 0 0 1 1 1
CS.CS_Person 0 1 1 1 1 1 0
CS.Student 0 0 1 0 0 0 0
CS.Professor 0 0 0 0 0 1 0
TP.Student 1 1 1 0 0 0 0

Fig. 6. Tabular representation of the Base Extension Set of University_Person

We adopt the algorithm of [25] to determine a base extension set®. Figure 5 shows the Base
Extension Set for University_Person. A Base extension set of a Global Class G is represented by
a table. Table rows represent the local classes of the global class and table columns represent the
base extensions. The presence of a 1 in the table cell (L, B) means L € F(B) (see Figure 6).

The attributes of a Base Extension B are the global attributes which are mapped, by a not
null mapping, into a local class of B. Formally:

Definition 5 (Base Extension Attributes). Given a global class G = (L, GA,MT) and a set
of base extensions of G, (B, F), the attributes of a base extension B € B are defined as:

A(B) ={ga € GA |3L € F(B), MT[L][ga] # null}.
The Base Extensions Attributes of our example are showed in Figure 7.

Definition 6 (Domination). Given a global class G = (L, GA, MT) and a set of base extensions
(B,F) of G, for all B,By € B we say that B; dominates By w.r.t. the set of global attributes

3 The Object fusion problem

The base extension set allows the detection of all the overlapping classes in a global class. For each
pair of overlapping classes we have to face the object fusion problem, i.e. to identify instances of
the same object and fuse them.

The goal is thus to find semantic identifiers for each instance of each local class wvirtually

integrated at mediator level. In fact, MOMIS (as all mediator based systems) is not the owner of

3 More than one base extension set can be obtained on the basis of the above definition; the discussion

about the quality of the selected set is out of the scope of this paper.



A

B;) = {name, year, school, rank,e mail, s_code, tax}

b

B;) = {name, year, school, rank,e mail, s_code, tax}

P

B,) = {name, school}
A

(
(
(B3) = {name, year, school, rank,e mail, s_code, tax,takes}
(
(Bs) = {name, rank,dept,email, section, school}

A(Bg) = {name, rank, dept, e mail, section, belong to, school}

A(B7)={name, rank, dept, e_mail, section}
Fig. 7. Base Extensions Attributes

the objects that extracts from the sources, but only a way to access them. So, two objects coming
from two different sources may share the same oid, even if semantically not related; on the other
hand two objects may have two different identifiers even if semantically related.

We can find a semantic identifier, for the objects extracted from the sources, in local interfaces
keys; in this case criteria that allow the object fusion process to be semi-automatic can be found.
The classes which must be considered for object fusion belong to the same base extension, further-
more, intensional and extensional relationships between classes, stored in the Common Thesaurus,

can be exploited to detect semantically homogeneous attributes and join attributes.

Definition 7 (Semantically Homogeneous Attributes). Given a global class G = (L, GA, MT),
let Ly, Ly € L be two local classes and X1 C La(L1), Xo C La(Ls) two set of local attributes. We

say that X1 and Xs are semantically homogeneous iff there exists a global attribute ga € G A such
that the set of attributes occurring in MT[L:][ga] (MT|[Ls][ga]) is equal to X; (X3).

Definition 8 (Join Attributes). Given a global class G = (L, GA, MT), let Ly, Ly € L be two
local classes. The Join Attributes between (L1) and (La) are two sequences of set of attributes
Xi C La(Ly) and X} C La(Ls), such that

— direct—join : X{ and X} are semantically homogeneous, for all1 <i<n or

— indirect—join : an explicit mapping between X{ and X3 is defined.

Thus, for each pair of local classes (L1, L2) belonging to the same base extension, the following

types of join may occur:

— implicit direct—join : Using information about keys and extensional relationships between
classes, it is possible to automatically identify the set of direct join attributes between two
local classes. The most evident case is when two local key attributes are semantically homoge-
neous: these sets are automatically detected as join attributes (the QM automatically gener-
ates an equijoin predicate among the involved local classes). For example: CS.Student NT g
UNI.School Member and the set X; = {CS.Student.first name,CS.Student.last name} is
a key for the local class CS.Student and it is semantically homogeneous to the set X, =
{UNI.School Member.name}: in fact, X; and X, are mapped into the same global attribute

name (see figure 4).
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Fig. 8. Indirect—join by a Join Table

— direct—join : the designer explicitely introduces the two sets of join attributes, X; and X, and
an equijoin predicate. In this case, the QM verify that the join attributes, X; and X5, be
semantically homogeneous, i.e. they are mapped into the same set of global attribute in the
Mapping Table.

— indirect—join : the join is indirectly performed between the two sets of join attributes X; and
X5 through a designer—defined mapping. In this case, it is not necessary that X; and X» be
semantically homogeneous. For example, to define a join criteria between CS.Student and
TP.Student the designer defines a Join Table where the local attributes name and s_code are

explicitly related (see figure 8).

4 The MOMIS Query Manager

We show the optimized query reformulation obtained with our method on the following (mediated)
query:
Q: select email

from University_Person

where school = ’cs’

and (s_code = ’alx’ or

section = ’infol’ or year = ’2001’)

Processing the above query, without considering extensional relationships, would individuate all
the local classes for which at least one of the mediated query attributes has a not null mapping
with it: UNI.Research Staff, UNI.School Member, CS.Student and TP.Student. The query has
thus to be reformulated on the basis of the above classes. By considering extensional relationships
it is possible to avoid the access to some local class, obtaining an effective query optimization,
independent from any specific cost model. In our method, extensional relationships are considered
by using the computed base extensions. In Figure 9 we show, and outline in the following, query

processing phases on the basis of our method.
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Fig. 9. Query processing phases

Determination of the Local Classes set

1. the subset of Base Extensions including the global attributes of the query is computed

2. the local classes included into the Base Extension subset computed at point 1. are determined
Query Reformulation w.r.t local sources.

1. query reformulation into local queries on the basis of the classes identified in the previous phase
Local query execution

1. local queries are sent to the wrappers to be translated and executed by the local sources
Mediated query execution

1. for each Base Extension object fusion of the local queries results is performed

2. the union of the results of the queries identified in the previous phase is performed

3. residual predicates (i.e., the predicates which are not included in any local query) are solved.

Determination of the Local Classes Set We consider the Disjunctive Normal Form - DNF of
the query condition; for the query Q we have: DNF = F; orF, orF3 where:

F; = (school=’cs’) and (s_code=’alx’)

Fy = (school=’cs’) and (section=’infol’)

F3 = (school=’cs’) and (year=’2001’)
For each factor F' of DNF' we define the set: BE(F) = {B |V ga of F,ga € A(B)},i.e., B€ BE(F)
iff A(B) contains all the global attributes of the factor F'. In our example:

— BE(F\) = BE(F3) = {BE1,BE2, BE3}
— BE(F,) =0

Intuitively, a factor F' of DN F such that BE(F) = () can be eliminated as the value of F is always
false. In our example, we obtain a simplified DNF = F; orFj.
On the basis of this simplification, we obtain the following result: we do not have to access

the local class UNI.Research Staff as the only predicate related to its attributes (section =



’infol’) has been eliminated. This optimization result is due to the extensional relationships:
UNI.Research Staff DISJg,; TP.Student and UNI.Research Staff DISJg,: CS.Student.

In the presence of more complex queries and a large set of extensional relationships the opti-
mization results that can be obtained by using base extensions can be effective. Furthermore, in
some cases, as:

Q: select email from University_Person

where school = ’cs’ and section = ’infol’
we have BE(F) = (), that is an empty answer (no access at the sources).

Local classes are determined by considering the union of all the local classes included in the
previously evaluated base extension subset and subsequently eliminating dominated ones. With ref-
erence to our example, we have BE(F,) = BE(F3) = {BE1}, as BE1 dominates both BE2 and
BES3; as a consequence the identified local classes are: { TP. Student, UNI.School Member }. There-
fore, also the class CS.Student is excluded from query execution: it is useless as its instances are in-
cluded in the ones of another local class (as stated by CS.Student NTg, UNI.School Member) and
its contribution to the query, the attribute school name, is already present in UNI.School Member).

As to summarize, the result of this phase are: a simplified Mediated Query, a set of base
extensions and, then, a Local Classes Set.

Query Reformulation For each pair of local classes belonging to the same base extension the
related join attributes are considered. In our example, we have only a base extension, BFE;, then
the local classes are TP.Student and UNI.School Member and the join attribute is name for both
the classes. We consider the Conjunctive Normal Form - CNF of the simplified DNF obtained in
the previous phase: CNF = (school = ’cs’) and ((s_code = ’alx’) or (year = ’2001’))
and we build a local query for each local class individuated in the previous phase

QL: select <select-list> from L

where <condition>

in two steps:

1. <condition> is the conjunction of all factors of CNF' which can be solved in the local class
L; these factors are rewritten w.r.t. the attributes of local class L on the basis of the mapping
table. In our example, for the class TP.Student we have <condition>=(school_name=’cs’)
and for the class UNI.School Member we have <condition>=(school=’cs’). Note that, the
same predicate may be mapped into more than one class, on semantic homogeneous attributes.
From a theoretical point of view, this multiple mapping does not introduce any problem as
semantic homogeneous attributes have been individuated in the integration activity; on the
other hand, from an optimized execution point of view classes supporting such a predicate
could be chosen among according to cost (either financial or computational) criteria.

After considering all the local classes, the predicates which are not included in any local query
are considered as residual predicates. In our example: ((s_code=’alx’) or (year=’2001’)).

2. <select-1list> is obtained by adding to the query attributes all the join attributes and the
attributes included into the residual predicates.

In our example, we have two local queries:
QL1: select email, name, s_code QL2: select email, name, year
from TP.Student from UNI.School_Member

where (school_name = ’cs’) where (school = ’cs’)



Mediated Query Execution The first step of the Mediated Query Execution is the object
fusion of the local queries results of the local classes belonging to the same base extension: this is
performed by a query, called object fusion query, for each base extension previously individuated.
In our example, we have only the base extension BE; and the object fusion of QL1 and QL2 is
based on the direct—join on the join attribute name, thus we obtain the object fusion query:

(QBEl: select email, s_code, year
from QL1,QL2

where QL1.name=Q12.name

where the <select-1list> is obtained by adding to the attributes list the set of attributes of
the residual predicates; of course, all the object fusion queries have the same <select-list>.

The second step of the Mediated Query Execution is the union of the object fusion queries. In
our example, it is not performed as there is a single base extension. The third and last step of the
Mediated Query Execution is the execution of the residual predicates:

QR: select email from QBE1
where (s_code = ’alx’) or
(year = °2001°)

5 Conclusions

In this paper we proposed tool-supported techniques to query global information systems. The
techniques have been developed in the environment of a data integration, wrapper /mediator based
system, MOMIS, and try to achieve two main goals: query reformulation w.r.t local sources and
object fusion, i.e. grouping together information (from the same or different sources) about the
same real-world entity.

The developed techniques rely on the availability of integration knowledge, i.e. local sources
schemata, a virtual mediated schema and its mapping descriptions, that is semantic mappings w.r.t.
the underlying sources both at the intensional and extensional level. Mapping descriptions include,
unlike previous data integration proposals, extensional intra/interschema knowledge. Extensional
knowledge is exploited to detect extensionally overlapping classes and to define join criteria among
classes, thus allowing the optimized query reformulation and object fusion goals to be achieved.

We are aware that the presented techniques need further investigations and extensions, but we

believe that this research line is new and promising for data integration systems.
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